

Understanding Alpha & The Evolving PRRT Landscape

Udhayvir Singh Grewal, MD

GI/NET Medical Oncologist Assistant Professor of Medical Oncology Winship Cancer Institute of Emory University, Atlanta, GA

WHO Classification of NENs

Terminology	Differentiation	Grade	Mitotic rate*, mitoses/2 mm ²	Ki-67 index*, %
NET, G1	Well differentiated	Low	<2	<3
NET, G2	Well differentiated	Intermediate	2-20	3-20
NET, G3	Well differentiated	High	>20	>20
NEC, small cell type	Poorly differentiated	High	>20	>20
NEC, large cell type	Poorly differentiated	High	>20	>20
Mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN)	Well or poorly differentiated	Variable	Variable	Variable

NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma. * Final grade is based on whichever of the two proliferation indexes places the neoplasm in the higher category.

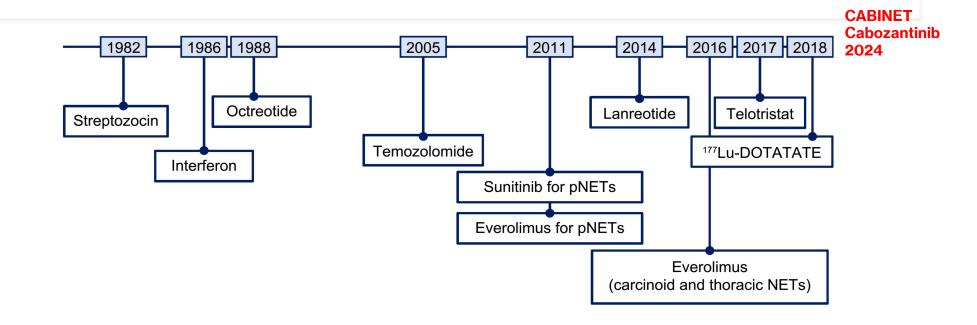
WHO Classification of NENs

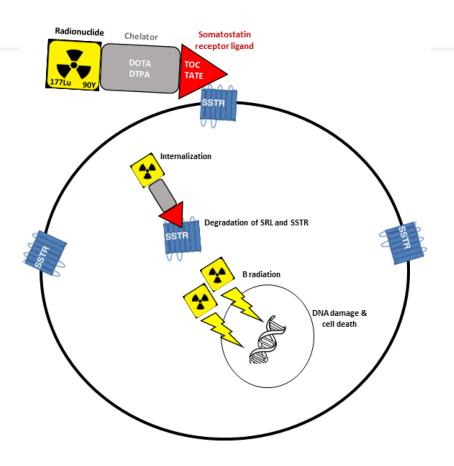
Terminology	Differentiation	Grade	Mitotic rate*, mitoses/2 mm ²	Ki-67 index*, %
NET, G1 NET, G NET, G NET, G NEC, sr NEC, la Mixed neurosascente non neurosascente neoplasm (MiNEN)	Well differentiated ell differentiated orly differentiated orly differentiated orly differentiated ell or poorly differentiated	Low Interm High High High Varia	ry tumor is dif	ferent

NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma. * Final grade is based on whichever of the two proliferation indexes places the neoplasm in the higher category.

WHO Classification of NENs

Terminology	Differentiation	Grade	Mitotic rate*, mitoses/2 mm ²	Ki-67 index*, %
NET, G1 NET, G NET, G NEC, sr Every patient is different	Well differentiated ell differentiated ell differentiated orly differentiated	Low Interny High High	/ery tumor is di	c3 fferent
NEC, la Mixed neuroenaceme non neuroenaceme neoplasm (MiNEN)	orly differentiated ell or poorly differentiated	High Varial		rierent


NET, neuroendocrine tumor; NEC, neurondocrine carcinoma. * Final grade is based on where of the two proliferation indexes places the neoplasm in the higher category.


Even patients with the same type of NEN have very different response to therapies. Biology is key!

Therapeutic paradigm for NETs

Peptide Receptor Radionuclide Therapy

DNA, deoxyribonucleic acid;

DOTA, tetraazacyclododecane-tetraacetic acid;

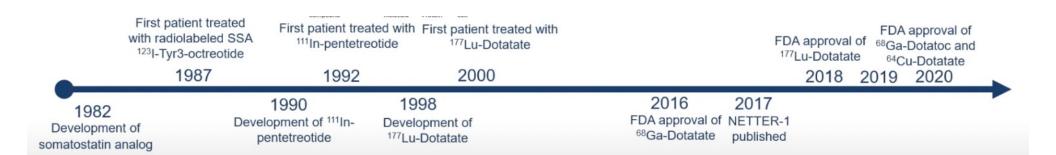
DTPA, diethylenetriamine pentaacetic acid;

Lu, Lutetium;

SRL, somatostatin receptor ligand;

SSTR, somatostatin receptor;

TATE, tyr3-octreotate;

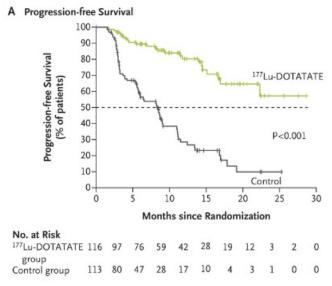

TOC, tyr3-octreotide;

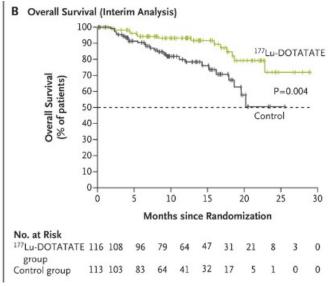
Y, Yttrium.

Peptide Receptor Radionuclide Therapy

Decades of work from development to approval.

Arguably the most significant therapeutic advancement for the management of NETs.

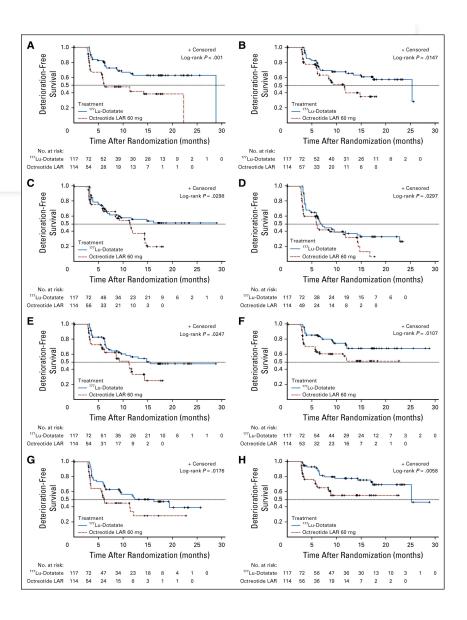



NETTER-1

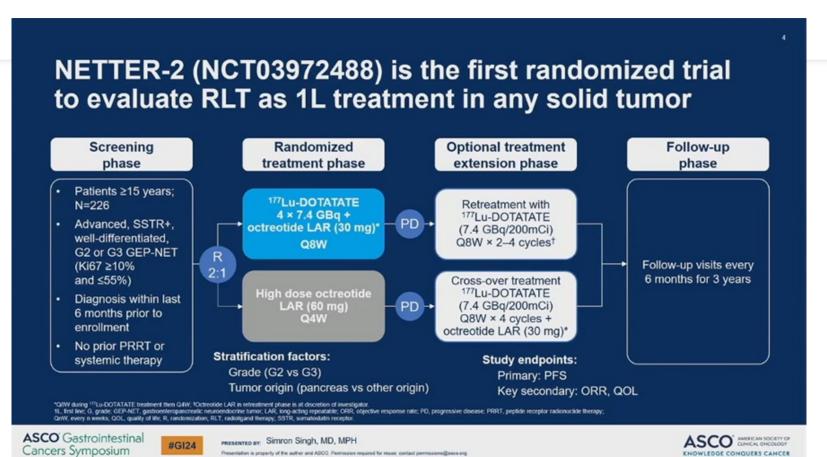
Phase 3 Trial of ¹⁷⁷Lu-Dotatate for Midgut Neuroendocrine Tumors

Jonathan Strosberg, M.D., Ghassan El-Haddad, M.D., Edward Wolin, M.D., Andrew Hendifar, M.D., James Yao, M.D., Beth Chasen, M.D., Erik Mittra, M.D., Ph.D., Pamela L. Kunz, M.D., Matthew H. Kulke, M.D., Heather Jacene, M.D., David Bushnell, M.D., Thomas M. O'Dorisio, M.D., et al., for the NETTER-1

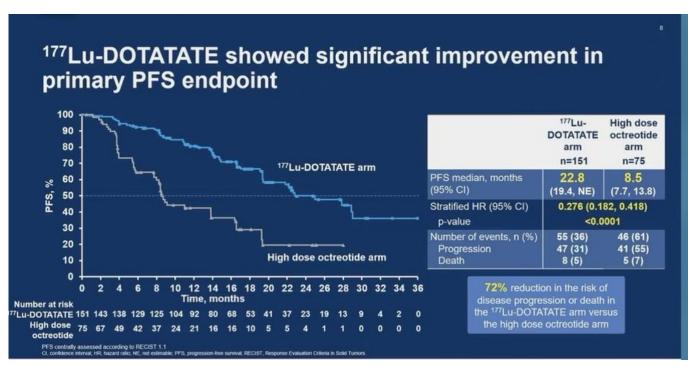
Trial Investigators*


- PFS at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the ¹⁷⁷Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group.
- The response rate was 18% in the ¹⁷⁷Lu-Dotatate group versus 3% in the control group (P<0.001).
- Minimal G3 toxicities.

Strosberg et al. NEJM. 2017

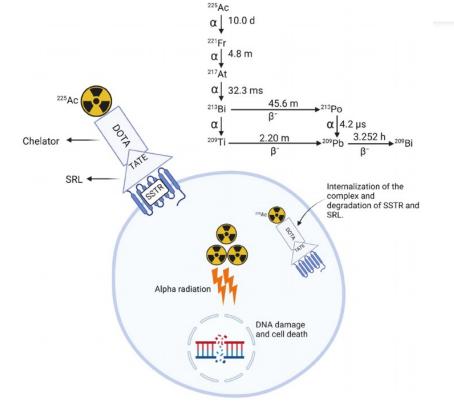

NETTER-1 QoL/PROs

Kaplan-Meier plots showing European Organisation for Research and Treatment of Cancer quality of life questionnaire domains with significantly improved time to deterioration in the ¹⁷⁷Lu-Dotatate arm compared with the octreotide arm.


- (A) Global health status:
- (B) physical functioning;
- (C) role functioning;
- (D) fatigue;
- (E) pain;
- (F) diarrhea;
- (G) disease-related worries;
- (H) body image.

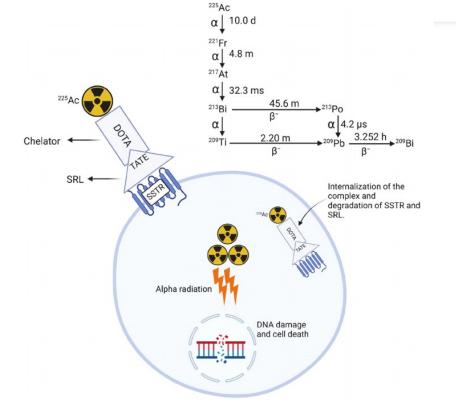
NETTER-2

Primary endpoint met!!


Prospective data for high G2 and G3 NETs.

Should PRRT be considered for everyone upfront?

Is HD SSA the optimal control arm here?

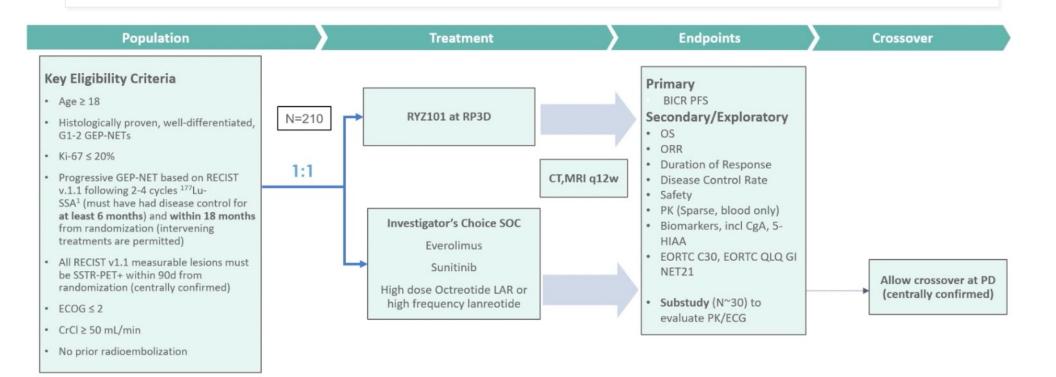

Toxicity with sequencing of PRRT and chemo?

Alpha RLT: The New Kid On the Block

Variables	Alpha particle radiation	Beta particle radiation
Particle energy	5–9 MeV	50-2,300 keV
Particle path length	40–100 μm	0.05-12 mm
Linear energy transfer	Approx. 80 keV/µm	Approx. 0.2 keV/µm
DNA damage	Double-stranded DNA breaks	Single-stranded DNA break
Impact of tissue hypoxia on therapeutic activity	Expected to be less	Expected to be more
Off-target toxicity	Expected to be less	Expected to be more

Alpha RLT: The New Kid On the Block

Variables	Alpha particle radiation	Beta particle radiation	
Particle energy	5–9 MeV	50-2,300 keV	
Particle path length	40-100 μm	0.05-12 mm	
Linear energy transfer	Approx. 80 keV/µm	Approx. 0.2 keV/μm	
DNA damage	Double-stranded DNA breaks	Single-stranded DNA break	
Impact of tissue hypoxia on therapeutic activity	Expected to be less	Expected to be more	
Off-target toxicity	Expected to be less	Expected to be more	


[Abbreviations: DNA: deoxyribonucleic acid].

Alpha RLT

Stronger?
Safer?
More effective

Grewal et al. Future Oncol. 2025

ACTION-1: A New SOC in the making?

Other alpha agents in the pipeline

Pb212-DOTAMTATE

Pb212-VMT-α-NET

RLT agents	Phase	Target Accrual	Study Population	Primary endpoints	Secondary endpoints	ClinicalTrials. gov ID
²¹² Pb-DOTAMTATE	Phase 2, multi- center.	69	Histologically confirmed NETs and positive somatostatin analog imaging, with either no prior PRRT (PRRT naive) or prior history of PRRT (previous PRRT).	Objective response rate per RECIST v1.1 and treatment-related adverse events.	PFS, OS, TTP and QoL.	NCT05153772
[²¹ Pb] VMT-α-NET	Phase 1/2, multi-center, open-label	280	Histologically confirmed unresectable or advanced SSTR2-avid NETs who have not received prior PRRT.	Safety analysis (DLTs).	ORR, DoR, PFS, OS and biodistribution.	NCT05636618
[²¹ Pb] VMT-α-NET	Phase 1, single- center	24	Pathologically confirmed advanced well- differentiated WHO grade 1 or 2 NETs who have received prior PRRT.	Determine the recommended phase 2 dose [¹¹² Pb] VMT-α- NET.	ORR and maximum tolerated radiation dose for kidneys.	NCT06148636

[Abbreviations: DLTs: dose-limiting toxicities; DoR: duration of response; NETs: neuroendocrine tumors; ORR: overall response rate; OS: overall survival; PFS: progression-free survival; PRRT: peptide receptor radionuclide therapy; QoL: quality of life; RECIST: response evaluation criteria in solid tumors, SSTR: somatostatin receptor; TTP: time to progression.].

Grewal et al. Future Oncol. 2025

Where does alpha RLT fit in the paradigm?

Where does alpha RLT fit in the paradigm?

What is the safety of RLT in naïve and pre-treated disease?

Where does alpha RLT fit in the paradigm?

What is the safety of RLT in naïve and pre-treated disease?

Is one alpha product better than the others?

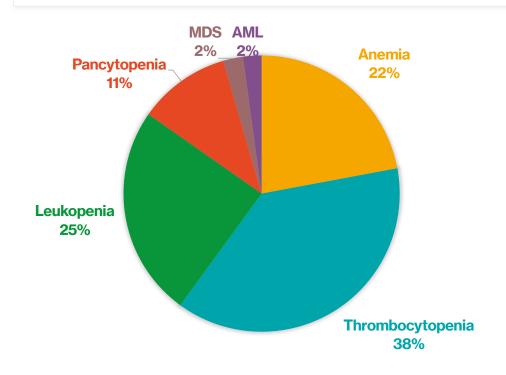
Where does alpha RLT fit in the paradigm?

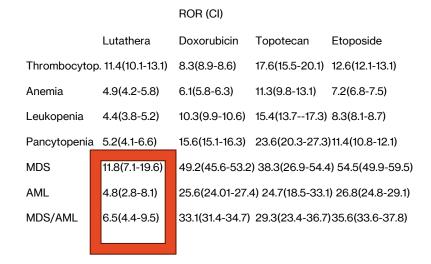
What is the safety of RLT in naïve and pre-treated disease?

Is one alpha product better than the others?

Do we have effective strategies to personalize choice between beta and alpha RLT?

Where does alpha RLT fit in the paradigm?

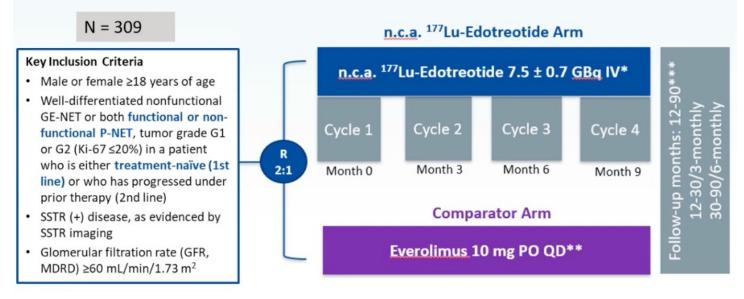

What is the safety of RLT in naïve and pre-treated disease?


Is one alpha product better than the others?

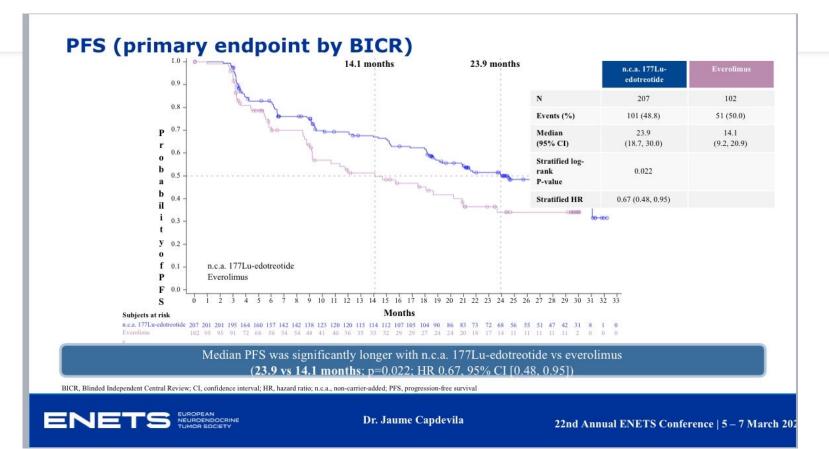
Do we have effective strategies to personalize choice between beta and alpha RLT?

Is alpha RLT really more effective and safer than beta RLT?

Long-term Bone Marrow Toxicity



Sequencing


COMPETE trial

A Prospective, Randomised, Controlled, Open-label, Multicentre Phase III Study to Evaluate Efficacy and Safety of Peptide Receptor Radionuclide Therapy (PRRT) With 177Lu-Edotreotide Compared to Targeted Molecular Therapy

Primary outcome: PFS.
Dosimetry modulated trial.
PRRT frequency q3 months.
Completed recruitment.
Results awaited.

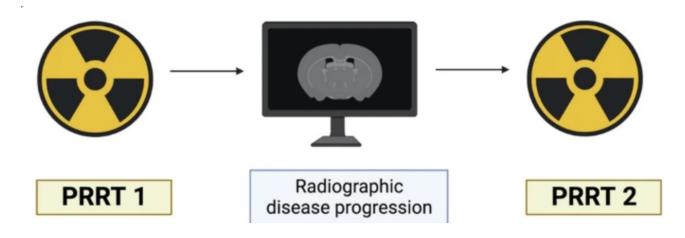
Results- ENETS 2025

COMPOSE trial

A Prospective, Randomised, Controlled, Open-label, Multicentre Study to Evaluate Efficacy, Safety and Patient-Reported Outcomes of Peptide Receptor Radionuclide Therapy (PRRT) With 177Lu-Edotreotide Compared to Best Standard of Care

Key Inclusion Criteria

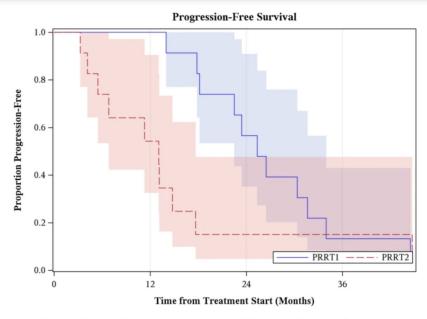
- ≥18 years of age
- •Well-differentiated GE-NETs or Pan-NETs with a Ki-67 15-55%
- •SSTR+ disease, as evidenced by ⁶⁸Ga-based or ⁶⁴Cu-based SSTR PET within 2 months prior to randomization and as close as possible to the FDG PET
- All patients need to undergo a FDG PET scan within 2 months prior to randomization
- Patients may be treatment naïve (first-line) or have a maximum of one prior line of therapy, including SSAs (for tumor control vs symptomatic*), (second-line)


Phase III enrolment ongoing.
Primary outcome: PFS

1ST and 2nd line
Dosimetry
Physician choice
Full genomic analysis

Cycle 2 at week 6.

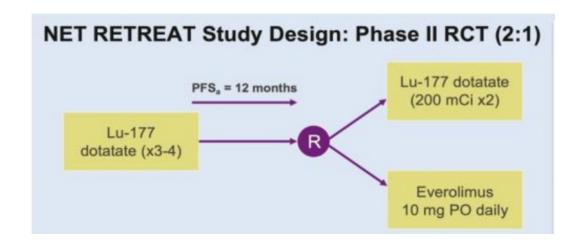
Repeat PRRT in NETs


- Limited data (retrospective) from studies from Europe and Asia: repeat PRRT is safe and effective.
- NANETS consensus statement: Reasonable to consider if disease responds well to one complete course of ¹⁷⁷Lu-DOTATATE.

Repeat PRRT in NETs

50% effective. No new safety signals

			Treatment Cycle			
Covariate	Level	Statistics	PRRT1	PRRT2	P-value	
			N=11	N=10		
Anemia	No	N (Col %)	6 (54.6%)	3 (30%)	0.39	
	Yes	N (Col %)	5 (45.5%)	7 (70%)		
Thrombocytopenia	No	N (Col %)	9 (81.8%)	7 (70%)	0.64	
	Yes	N (Col %)	2 (18.2%)	3 (30%)		
Renal Toxicity	No	N (Col %)	6 (54.6%)	7 (70%)	0.66	
7	Yes	N (Col %)	5 (45.5%)	3 (30%)		


Estimated survival curves for progression–free survival (PFS). Median PFS after PRRT1 was 25.4 months and median PFS after PRRT2 was 13.1 months

Grewal et al. J Gastrointestinal Cancer, 2024

NET RETREAT Trial

A Phase II trial of Lu-177 DOTATATE retreatment vs everolimus in midgut NET

PI: Dr. Simron Singh, Dr Aman Chauhan

Key Inclusion/Exclusion Criteria:

- Metastatic Progressive midgut NET (Grade 1-2)
- No RECIST progression within 12 month from last dose of prior PRRT (3-4 prior PRRT doses)

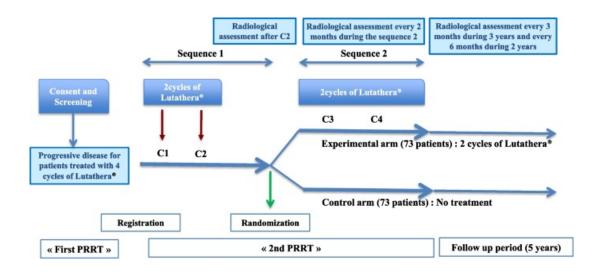
Stratification:

Durable response > vs < 24 mo

Statistics Design:

 100 patients will be randomized in 2 (PRRT):1(Everolimus) to detect an 8 month increase in median PFS, at a one-sided 0.05% alpha and with 90% power

Objectives:


Primary: PFS

Secondary: Safety/Toxicity

Exploratory: NETTEST and hPG80

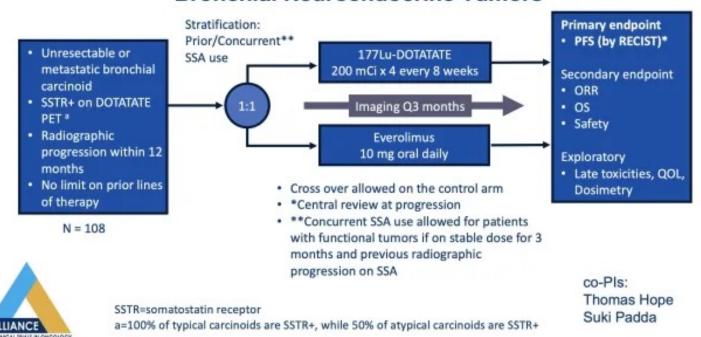
ReLUTH trial (French study)

PI: Dr Deshayes

Multicenter, randomized, open label phase II study.

Well differentiated midgut neuroendocrine tumors.

Progressive disease after 4 cycles of Lutathera.


Primary endpoint: DCR at 6 months.

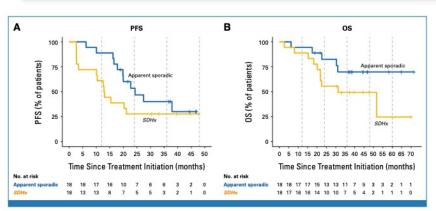
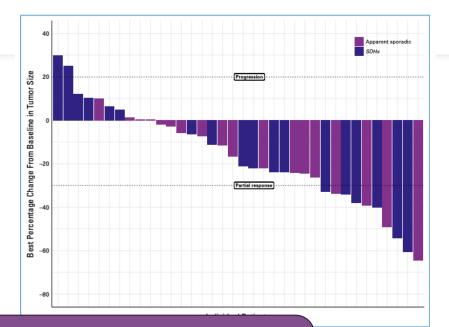
Expanding indications of PRRT

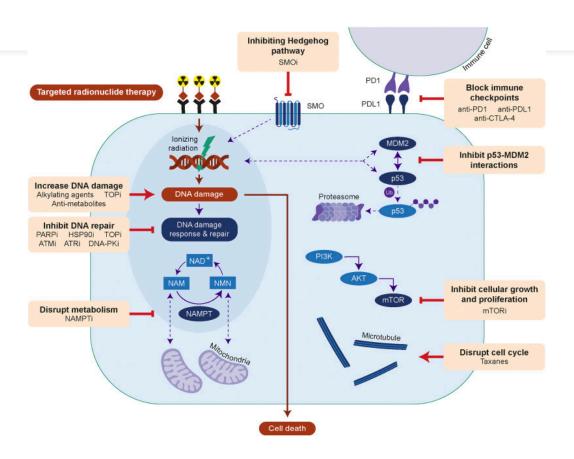
Alliance A021901: Randomized Phase II Trial of Lutetium Lu 177

Dotatate Versus Everolimus in Somatostatin Receptor Positive

Bronchial Neuroendocrine Tumors

New data for Pheo Para- JCO 2025

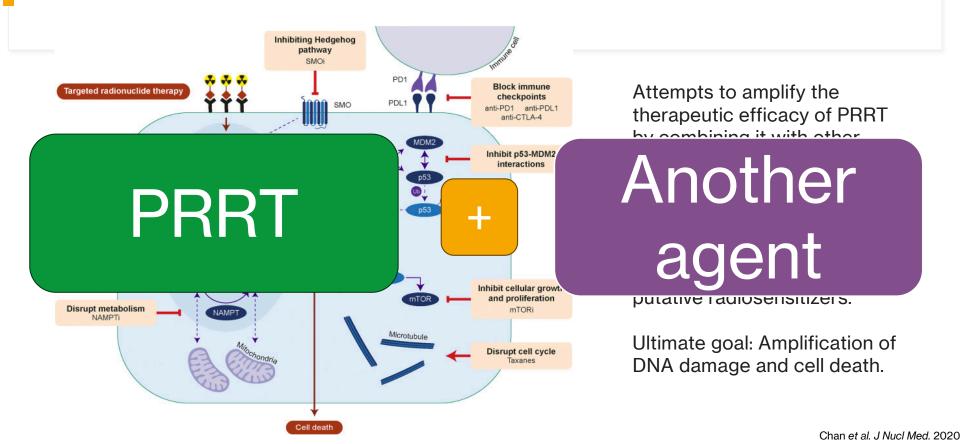




FIG 1. Kaplan-Meier plots of (A) PFS and (B) OS among patients in the apparent sporadic and SDHx cohorts. The vertical dashed lines indicate the 12-, 24-, 36-, and 48-month marks. OS, overall survival; PFS, progression-free survival; SDHx, succinate dehydrogenase.

Median PFS was 19.9 months (12.9 months SDHx v 24.3 months sporadic) and median OS was 51.7 months (31.2 months SDHx v not reached in sporadic). Best response was achieved on average 11.0 months after completing 177Lu-DOTATATE.

to genetic cohort. Two patients had thers had progression on the basis of

Combination Therapy with PRRT

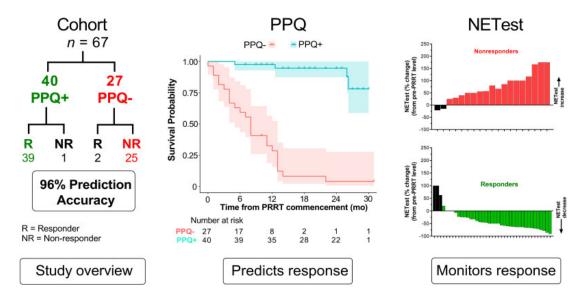


Attempts to amplify the therapeutic efficacy of PRRT by combining it with other agents.

Such strategies include administering concurrent TRT and chemotherapy, and the use of TRT with known or putative radiosensitizers.

Ultimate goal: Amplification of DNA damage and cell death.

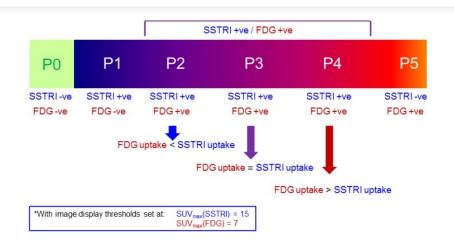
Combination Therapy with PRRT

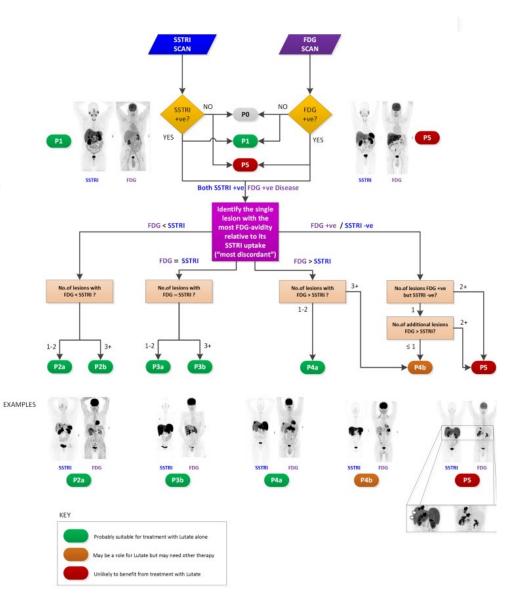


Ongoing studies

Testing the Effectiveness of an Anti-cancer Drug, Triapine (RNRi), When Used with Targeted Radiation-based Treatment (Lu-177 Dotatate), Compared to Lu-177 Dotatate Alone for Metastatic Neuroendocrine Tumors	Phase I/II	NCT05724108
Lu-177 Dotatate in Combination With Olaparib (PARPi) in Inoperable Gastroenteropancreatic Neuroendocrine Tumors (GEP-NET)	Phase I/II	NCT04086485 NCI
Testing the Addition of An Anti-cancer Drug, M3814 (Peposertib, DNA PKi), to the Usual Radiation-Based Treatment (Lu-177 Dotatate) for Pancreatic Neuroendocrine Tumors	Phase I	NCT04750954 Ohio State University
I-131-MIBG and Lu-177 Dotatate for the Treatment of Neuroendocrine Tumors	Phase I/II	NCT04614766 University of Iowa
Pembrolizumab (PD-1 mAb) and Liver-Directed Therapy or Lu-177 Dotatate in Treating Patients with Well-Differentiated Neuroendocrine Tumors and Symptomatic and/or Progressive Liver Metastases	Phase II	NCT03457948 UCSF
Testing the Addition of Sunitinib Malate (VEGFR TKI) to Lutetium Lu 177 Dotatate in Pancreatic Neuroendocrine Tumors	Phase I	NCT05687123

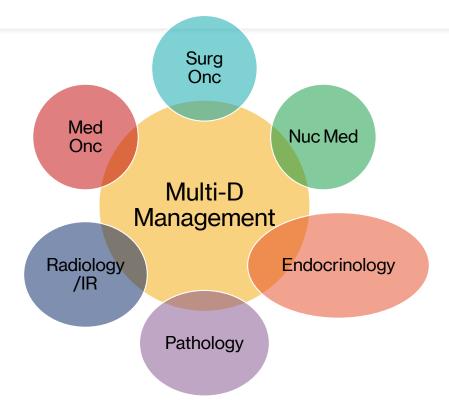
-- --

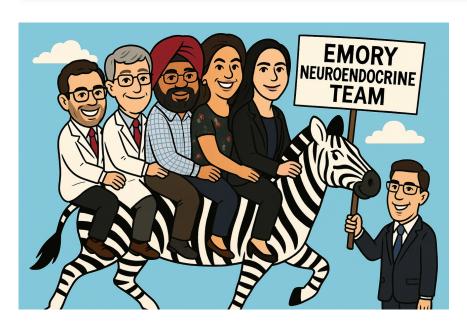

PPQ and NETest



PPQ: blood-based assay comprises expression of 8 genes and captures both growth factor and metabolomic expression specifically related to oxidative stress, metabolism, and hypoxic signaling.

NETest: evaluates 51 NET-specific genes. This test functions as a surrogate biomarker, and changes in score, compared with before treatment (e.g., SSAs or surgery), strongly correlated with tumor progression measured with CT or MRI.


Dual Tracer Imaging


Chan et al. Theranostics. 2017

Multi-disciplinary management

Acknowledgements

